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STOCHASTIC OPTIMIZATION BY SIMULATION:
CONVERGENCE PROOFS FOR THE GI/G/1 QUEUE IN

STEADY-STATE

PIERRE L'ECUYER' and PETER W. GLYNN2

ABSTRACT

Approaches like finite differences with common random numbers, infinitesimal perturbation anal-
ysis, and the likelihood ratio method, have drawn a great deal of attention recently, as ways of

estimating the gradient of a performance measure with respect to continuous parameters in a
dynamic stochastic system. In this paper, we study the use of such estimators in stochastic approx-
imation algorithms, to perform so-called "single-run optimizations" of steady-state systems. Under

mild conditions, for an objective function that involves the mean system time in a GI/G/1 queue,
we prove that many variants of these algorithms converge to the minimizer. In most cases, how-

ever, the simulation length must be increased from iteration to iteration; otherwise the algorithm

may converge to the wrong value. One exception is a particular implementation of infinitesimal
perturbation analysis, for which the single-run optimization converges to the optimum even with

a fixed (and small) number of ends of service per iteration. As a by-product of our convergence

proofs, we obtain some properties of the derivative estimators that could be of independent interest.

Our analysis exploits the regenerative structure of the system, but our derivative estimation and

optimization algorithms do flot always take advantage of that regenerative stucture. In a com-

panion paper, we report numerical experiments with an M/M/1 queue, which illustrate the basic

convergence properties and possible pitfalls of the various techniques.
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1. Introduction

Simulation has traditionally been used to evaluate the performance of complex systems, especially
when analytic formulae are not available. Using it to perform optimization is much more challenging.
Consider a (stochastic) simulation model parameterized by a vector 0 of continuous parameters, and
suppose one seeks to minimize the expected value a(O) of some objective function. In principle,
if a(O) is well behaved, one could estimate its derivative (or gradient) by simulation, and use
adapted versions of classical nonlinear programming algorithms. Recently, the question of how
to estimate the gradient of a performance measure (defined as a mathematical expectation), with
respect to continuous parameters, by simulation, has attracted a great deal of attention. See, e.g.,
Glasserman (1991), Glynn (1990), L'Ecuyer (1990), Rubinstein and Shapiro (1993), and Suri (1989).
For "steady-state" simulations, a "single-run" iterative optimization scheme based on stochastic
approximation (SA) has been suggested (Meketon 1987, Pflug 1990, and Suri and Leung 1989). At
each iteration, this scheme uses an estimate of the gradient of a to modify the current parameter
value. These methods could enlarge substantially the class of stochastic optimization problem' that
can be solved in practice.

In this paper, we investigate the combination of SA with different derivative estimation tech-
niques (DETs), in the context of a single queue. The general theory of SA has been studied
extensively (see Kushner and Clark 1978, Metivier and Priouret 1984, and many references cited
there), but not so much their combination with various DETs, for discrete-event systems in the
steady-state context, as we do here. Preliminary empirical experiments have been undertaken by
Suri and Leung (1989) for a M/M/1 queue. These authors looked at two SA methods, which they
presented as heuristics. One was based on infinitesimal perturbation analysis (IPA), while the other
was an adaptation of the Kiefer-Wolfowitz (KW) algorithm, which uses finite differences (FD) to
estimate the derivative. They did not prove convergence. We examine in this paper many DETs,
including some based on FD, with and without common random numbers, IPA, and variants of the
likelihood ratio (LR) or score function (SF) method. These techniques can be combined with SA
in different ways. For example, at iteration n of SA, one can use either a (deterministic) truncated
horizon tn, or a fixed number t, of regenerative cycles. Also, tn can increase with n or remain
constant. We prove a.s. (almost sure) convergence to the optimizer for many SA/DET variants.
Within each class of DET (FD, LR, IPA), there are variants for which we require tn - oo as
n - oo, and others for which there is no constraint on tn (e.g., it can be constant). For the latter,

the DETs are all regenerative estimators, with one exception. That exception is IPA with the same
number of customers at each SA iteration, for which we prove weak convergence.

Chong and Ramadge (1992a, 1993) also analyzed (in parallel to us) IPA-based SA algorithms
to optimize a single queue, and proved a.s. convergence to the optimum, using different proof
techniques than ours and different assumptions. In their first paper, they studied the case of an
M/G/1 queue, while in their second, they considered a GI/G/1 queue and an SA algorithm which
updates the parameter after an arbitrary number of customers. That includes in particular the case
of one customer per SA iteration. In Chong and Ramadge (1992b), they extended their analysis and
convergence proofs to more general regenerative systems. Fu (1990) previously analyzed a different
variant of SA-IPA algorithm, for which he proved a.s. convergence. His algorithm exploited the
regenerative structure of the system and the special form of the objective function (1) (see §2.2). His
result corresponds to our Proposition 6 (c). Wardi (1988) also suggested and analyzed a different
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variant of SA, combined with IPA, for which he showed a non-standard kind of convergence which
he called convergence in zero upper density. In all those papers, only IPA was considered.

A different approach for stochastic optimization, called the stochastic counterpart method, is
proposed and thoroughly analyzed in Rubinstein and Shapiro (1993). The basic idea is to estimate
the whole objective function as a function of 0, in a parameterized form, using a likelihood ratio
technique, and then to optimize that sample function by a standard (deterministic) optimization
method. In this paper, we do not consider that approach.

In §2, we consider a GI/G/1 queue for which the decision variable is a parameter of the service
time distribution. The aim is to minimize a function of the average system time per customer. We
feel that many important questions that would arise in more general models, when SA is used to
optimize infinite-horizon (steady-state) simulations, are well illustrated by this simple example. We
recall the classical SA algorithm and give (in Appendix I) sufficient conditions for its convergence
to the optimum. The §3 reviews different ways of estimating the derivative (DETs). For a variety
of SA-DET combinations, we prove convergence to the optimum, under specific conditions (see
Propositions 3-7). In the conclusion, we discuss briefly how all of this can be extended to more
general systems and mention prospects for further research. A companion paper (L'Ecuyer, Giroux,
and Glynn 1993) reports numerical investigations and discusses the question of convergence rates,
for which further analysis would be needed.

All our proofs are relegated to Appendix II. Since 0 changes constantly between the iterations
of SA, some convergence properties of the derivative estimators (e.g., bounded variance and con-
vergence in expectation to the steady-state derivative) must be shown to hold uniformly in 0. As
a byproduct of our proofs, we obtain original results concerning GI/G/1 queues that could be of
independent interest. For instance, it follows from the renewal-reward theorem (Wolff 1989) that
for a stable queue, the average sojourn time of the first t customers in the queue converges in
expectation, as t ---+ o, to the infinite-horizon average sojourn time per customer. We prove, under
appropriate conditions, that this convergence is uniform over 0 and s, where s is the initial state
(taken over some compact set), which corresponds to the waiting time of the first customer, and 0
lies in a compact set in which the system is (uniformly) stable. We also derive a similar uniform
convergence result for the derivative of the expected average sojourn time with respect to 0, and a
few additional characterizations of this expectation.

2. Example: a GI/G/1 Queue

2.1. The Basic Model

Consider a GI/G/1 queue (Asmussen 1987, Wolff 1989) with interarrival and service-time distri-
butions A and Be respectively, both with finite expectations and variances. The latter depends on
a parameter 0 E A = , 0max] C R. We assume that for each O E 0, the system is stable. Let
w(O) be the average sojourn time in the system per customer, in steady-state, at parameter level
0. The objective function is:

a(0) = w(0) + C(0). (1)

where C : e ,-- R is continuously differentiable and analytically available. We want to minimize
a(*) over e = [0min, 0ma], where ain < 0n < O.,, < 0a Let 0* be the optimum. We define
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0 and 9 this way to be able to do FD derivative estimation at any point of 9 (see §3.1). This is
also useful for LR and IPA. Let 6' be an open interval that contains 9.

A GI/G/l queue can be described as a discrete-time Markov chain as follows. For i > 1, let
W,, G, and Wi* = W, + (i be the waiting time, service time, and sojourn time for the i-th customer,
and v• be the time between arrivals of the i-th and (i + 1)-th customer. For our purposes, W, will
be the state of the Markov chain at step i. The state space is S = [0, oc) and W, = s is the initial
state. W1, = 0 corresponds to an initially empty system. For i > 1, one has

w: = + ( and Wi 1 := (WK - +i)' (2)

where x+ means max(x, 0). Since C(O) can be evaluated directly, we will estimate only the derivative
of w(0) and then add C'(0) separately. Here and throughout the paper, the "prime" denotes the
derivative with respect to 0.

We can view the Markov chain {Wi, i = 1,22,. . } as being defined over the probability space
(Q, E,,Pe,,), where {Pe,,, 0 E E,s E S} is a family of probability measures defined over (fl, E).
The sample point w E Q1 represents the "randomness" that drives the system and P9,s depends
(in general) on 0 and s (where W1 = s E S is deterministic). Let Ee,s denote the corresponding
mathematical expectation. When the quantities involved do not depend on s, we sometimes denote
E8,8 by Ea to simplify the notation. For t > 1, let

t

h=(9,sw) W;; (3)
t=1

Wt(8,S) htj ~(6,s, w)dPe,.(w). (4)

Here, ht(O,s,w) represents the total sojourn time in the system for the first t customers, and
wt(O,s) its expectation. Let Ft be the a-field generated by ((1 ,v1 ,. . Then, ht(O,s,w) is
.Ft-measurable. Also, if a = 0 and if r denotes the number of customers in the first busy cycle, then
r + 1 is a stopping time with respect to {f.t, t > 1}. Let S = [0, c] be the set of admissible initial
states, where c is a (perhaps large) constant. It is well known from renewal theory that for each
fixed 0 E 0 and s E S, limt-.o Wt(O, s)/t = w(O).

2.2. Variants of the Optimality Equation

If a is convex and P* lies inside 9, then the minimization problem is equivalent to finding a root of

S= w'(O) + C'(O). (5)

Even if 0* is on the boundary of 9, the minimization problem can be solved by a descent method
which, at each step, computes a'(0) at the current point 0 and moves opposite to its sign. Here,
we will use a stochastic descent method (see §2.3), which at each iteration moves in the direction
of an estimate of a'(0).

Alternative formulae for the direction of descent can be derived using a regenerative approach
as follows. Let s = 0 and let r be the number of customers in the first regenerative cycle (busy
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period). LFrom elementary renewal theory one has w(8) = u(8)/1(0) where

u(O) = Ee,o w

1(9) = Ee,o~r].

If w'(0) exists, then, from standard calculus, one has

w'(0) = u'(9)1(0) - 1'(8)u(9) = u'(0) - W(0)t'(0) (6)12(o) = t()

One can combine estimators for each of the four quantities on the right-hand-side of (6) to obtain
an estimator for w'(0). Alternatively, finding a root of (5) is the same as finding a root of

U'(o) - w(9)1'(o) + t(0)C'(9) (7)

or of
u'(e)1(O) - "'(O)u(M) + M2(0)c'(8). (8)

So, instead of using an estimate of (5) in the descent method, one use an estimate of (7) or (8).
That was first suggested by Fu (1990) for (7) and Glynn (1986) for (8). The interest of (7-8) is that
unbiased estimators of them can be obtained based on a few regenerative cycles, which is not the
case for (5). For example, an unbiased estimator of (8) is easily built from an unbiased estimator
of (1(0), t'(0), u'(0)) and an independent unbiased estimator of (1(0), u(9)). Such estimators can be
constructed via the LR method, based on two regenerative cycles (see §3.3). Similarly, an unbiased
estimator of (7) can be constructed via IPA, based on one regenerative cycle, often in spite of the
fact that the estimators of u'(0) and 1'(0) are individually biased (see §3.4 and Heidelberger et al.
1988).

Equations (5) and (7-8) are specific to the form of our objective function (1). For a more
general case, let a(9) = W(0, w(0)), where V is convex and continuously differentiable. Then, as in
Chong and Ramadge (1992b),

,,(, w())w'( + L (o)),

where 0•1/0 and 9V/0w denote the partial derivatives of V w.r.t. its first and second component,
respectively. With appropriate conditions on V, our development for the DETs which aim at esti-
mating a'(0) would go through for this more general case. Generalization to vectors of parameters
is straightforward. Of course, more complicated non-convex functions, e.g., with multiple local
minima, are more difficult to deal with, as in the deterministic case.

Equations (7-8) are more dependent on the form of a than (5). For another illustration, let
a(8) = D(0)w0(0) + C(a), where D and C are known differentiable functions. Here,

a'(8) = D'(8)w2 (9) + 2D(9)w(9)w'(O) + C'(0).

But in a descent algorithm, one can use instead an unbiased estimator of

t3(O)a'(9) = D'(0)U2(9)1(9) + 2D(9)u(9)[1(O)u'(9) - u(9)e(O)] + 13(9)C'(O),

which can be obtained via LR, based on three (independent) regenerative cycles.

4



2.3. The Stochastic Approximation Scheme

We consider a stochastic approximation (SA) algorithm of the form

0.+- := Y(). - (9)

for n > 1, where On is the parameter value at the beginning of iteration n (91 E e is fixed, or
random with known distribution), Yn is an estimator of either (5), (7), or (8), obtained at iteration
n, {-y, n > 1} is a (deterministic) positive sequence decreasing to 0 such that E'l 7- = oo, and
we denotes the projection on the set E (i.e. lre(O) is the point of 0 closest to 0). To obtain Y., in
each case, we compute directly C'(0n), and estimate only the remaining terms, by simulating the
system for one or more "subrun(s)" of finite duration. Specific estimators are discussed in §3.

Let sn E S denote the state of the system at the beginning of iteration n. For all the estimators
that we consider, the distribution of (Y1,, sn+i), conditional on (#n,60, is completely specified by
n and PO.,,,, and is independent of the past iterations. In other words, {(Y., On+ 1,,S+ 1), n > 0}
is a (nonhomogeneous) Markov chain (Yo is a dummy value). Denote by En-.(') the conditional
expectation E(- I O., sn), i.e., the expectation conditional on what is known at the beginning of
iteration n. Suppose that each Y. is viewed as an estimator of (5) and is integrable. Then, En- 1 (Y.)
exists and we can write

Y= a'(On) + 0, + fn (10)

where

On = E.-i[Yn] - a'(9n) (11)

represents the (conditional) bias on Y. given (On, sn), while En is a random sequence, with
En.i(fn) = 0 and En-.l(c) = var (Yn I On,sn). If Yn is an estimator of (7) or (8) instead,
then replace G'(0,n) in (10-11) by t(On)a'(On) or t 2(9nj(O9), respectively.

2.4. Convergence to the Optimum

Proposition 1 below, proved in Appendix I, gives (simplified) sufficient conditions for the conver-
gence of (9) to the optimum. It treats the case where the (conditional) bias 0.n goes to zero and
the variance of Yn does not increase too fast with n. For some of the regenerative methods, one has
On = 0 for each n. Otherwise, when the DET uses the same number of customers at all iterations,
On typically does not go to zero. But sometimes, Eo(0.) --+ 0 and the algorithm might still converge
to the optimum. This is treated by Theorem 1 of Appendix I, which ensures weak convergence
under appropriate conditions.

PROPOSITION 1. Suppose that a is differentiable and convex or strictly unimoel over E. If
im,,.--.coo p3, = 0 a.e. and < Eo(eo)n 2 <co a.s., then lim,-..o, On = 0* a.s.. I

For convenience in the following sections, in the case where Y. is a truncated-horizon estimator
of (5), we will decompose O. as fn= Of + OR, where Of is the bias component due to the fact that
we simulate over a finite horizon and OR represents the possibility that Y1 may itself be a biased
estimator of the derivative of the finite-horizon expected cost. Typically, with FD, flý 6 0. If we
use a deterministic horizon tn at iteration n, then OF w't.(On, Sn)/t. - Wt'(0,). To make sure that
the latter converges to zero a.s., we will show, under appropriate conditions, that w't(O, s)/t - w'(O)
converges to zero uniformly in (0, s) as t goes to infinity.

5



2.5. Continuous Differentiability and Uniform Convergence

We want sufficient conditions under which a is convex or strictly unimodal, w and each wt(., s) are
differentiable, and the following uniform convergence results hold:

lim sup Iwt(O,s)/t - w(6)1 = 0 (12)

and

lrm sup Iw;(9,s)/t- w'(e)j = 0. (13)

In Proposition 11, we establish (12-13) under Assumption A below. We also prove, under
Assumptions A-C, that wt(&, s)/t is convex and continuously differentiable in 0 for each s and
t, and that a is also convex and continuously differentiable. Note that these properties can be
expected to hold only when appropriate regularity conditions are imposed on the service time
distribution Be. On the other hand, the properties that are exploited here are merely sufficient
for the validity of SA, not necessary. Assumptions A and B are used for IPA and LR derivative
estimation, respectively (they are typical IPA and LR assumptions), while C is used to ensure
the convexity of a. For example, an exponential service time distribution with mean 9 verifies all
these assumptions; see L'Ecuyer, Giroux, and Glynn (1993) for the details. Define Ui 4"f Be().

I defThen, Ui is a U(O, 1) random variable and Ci = Bi (U,) = min{" I Be(() < U,}. Define also
Z, =

ASSUMPTION A.

(i) There is a distribution B such that supseo Be'(u) <_ B'-(u) for each u in (0, 1). The queue
remains stable when the service times are generated according to B. Also, t[C8s] < Kc, where
1 < KC < 0o and E is the expectation that corresponds to B.

(ii) For each u E (0, 1), Be1 (u) is differentiable in 6. There exists a measurable r : (0, 1) ,--I R

such that supe 6go I B-(u)l _< r(u) for each u and 1 < Kr 1 fm(r(u))8du < 0o.

ASSUMPTIUN B.

(i) Assumption A (i) holds and the moment generating function associated with B is finite in
some neighborhood of zero.

(ii) Let Be have a density be, whose support {I > 0 1 be(C) > 01 is independent of 9 for 6 E Go.

(iii) Everywhere in 00, be(() is continuously differentiable with respect to 6, for each C > 0.

(iv) For each 8o E 0 and K > 1, there exists T = (8o - co, 8o + co) C 60 and 6 E 60 such that

sup (be(@) <K and Ej [up a In be(()) 1 < 0.
seuT bj(() E- K n E r' 00

ASSUMPTION C.

C is convex and continuously differentiable and for each u, B'l (u) is convex in 0.

6



3. Ways of Estimating the Derivative

One crucial ingredient for the SA algorithm considered here is an efficient derivative estimation tech-
nique (DET). In this section, we survey some possibilities and state convergence results regarding
their combination with SA. All the propositions are proved in Appendix II.

3.1. Finite Differences (FD)

This method is described, for instance, in Glynn (1989) and Kushner and Clark (1978), without
the projection operator. When used in conjunction with FD, the SA algorithm (9) is known as the
Kiefer-Wolfowitz (KW) algorithm. Here, we describe and use central (or symmetric) FD. For other
variants, like forward FD, see the above references. When 0 is a d-dimensional vector, the latter
uses only d + 1 instead of 2d subruns per iteration. However, its asymptotic convergence rate is not
as good (Glynn 1989). Spall (1992) analyzes a different FD method for SA, called "simultaneous
perturbation", and shows that it could be significantly more efficient than FD when d is large.

Take a deterministic positive sequence (cn, n > 1) that converges to 0. At iteration n, simulate
from some initial state s- E S at parameter value 0- = - ,&(0, - cn) = max(0n - c", 0.i.) for t,
customers. Simulate also (independently) from state s+ E S at parameter value On = wA(On +c ) -
Min(0n + cn, 09.) for tn customers. Let w; and w+ denote the respective sample points. A FD
estimator of (5) is

Yn = C'O.) + n n(on (14)
(o+ - O; )t(

The conditional bias

n = E-._ [Yn - Cn(o) - W',(o.,s.)/t.]

can itself be decomposed as g = 3D ++ j1, where

0 D Wt.(On',SO)- wtý(On,sO) tw'.(-n,,S)cn. -O o- 8 )tn tn
and

Wt = (O , -n+ ) - W t.(O n+ , Sn) + W t.(0;, 3n) - W. (0;, Sn') (15)
(0t - e;)tn

represent respectively the bias due to finite differences and the bias due to the possibly different

initial states.

PROPOSITION 2. Let Assumptions A-B hold, ti -0 0 and c, -, 0. Then lim•, ro •D 0.

The term /O' can be eliminated by picking s- = = s+ . Otherwise, if 14 - a•j is bounded,

the numerator in (15) should be in O(1/tn) (asymptotically). In that case, to get / -- 0, take

I1/(tncn) --+ 0. Even when #4 = 0, taking ti constant may lead to problems, because Of is usually

not zero. As cn -- 0, when w; and w+ are distinct ("independent"), the variance of Yn usually

increases to infinity. However, we have:

7



PROPOSITION 3. Suppose one uses SA with the estimator (14). Let Assumptions A-C hold,
S" o, c, "-- 0, and •=t t;(nCn)-2 < oo. Assume that -' 0 a.s. as n -- o (this can be

achieved trivia6ii by taking s- = s= s+). Then, =, -- * a.s.. u

Note that in the proofs of Propositions 2 and 3, Assumption A is used to prove (13), while C
is used to prove the convexity of w(.), and B is only used to prove the continuous differentiability.
These remarks also apply to Proposition 6.

A different approach is to estimate (8) instead of (5) using finite differences. A forward FD
approximation of (8) at 0 = On, adapted from Glynn (1986), is

U(9 ) -O n),(o) + 1( + t(en)t(9n)C'(On) (16)

,o )10o,) - t(19+, )u(#•) . t(8+)t( ,)' ,(,,). (17)
= e0+ - O.

To estimate (17), simulate for 2t, independent regenerative cycles, using parameter value 9,, [0+]

for the odd [even] numbered cycles. Let r. denote the number of customers during the j-th cycle
and hi denote the total system time for those rj customers. Then, an unbiased estimator of (17) is

_•.1 ,- (h2jT-2j-1 - h2j_•T2j + r2jT2j_jC,(On)•
S= n On+ - On (18)

nj=1

Here, t,i -- oo is not required. For instance, one can use t,n = 1 for all n.

PROPOSITION 4. Let Assumptions A-C hold, Cn = n-q for 0 < q < 1/2, and suppose one uses
SA with the estimator (18). Then, On -- O* a.s.. 1

3.2. Finite Differences with Common Random Numbers (FDC)

One way to reduce the variance in (14) is to use common random numbers across the subruns at
each iteration, start all the subruns from the same state: s; = j+ = s,, and synchronize. More
specifically, one views w as representing a sequence of U(0, 1) variates, so that all the dependency

on (0, s) appears in ht(0, s, .). Take wn+ = w- = wn,. Since the subruns are aimed at comparing very
similar systems, ht, (0#"ns, wn) and ht(O;,s,, 0 ,,) should be highly correlated, especially when cn

is small, so that considerable variance reductions should be obtained. Conditions that guarantee

variance reductions are given in Glasserman and Yao (1992). Proposition 2 still applies. However,
taking tn -- oo is essential. In L'Ecuyer, Giroux, and Glynn (1993), we discuss implementation

issues related to FDC and show that if in is kept constant, SA with FDC typically converges to
the wrong value.
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3.3. A Likelihood Ratio (LR) Approach

The LR approach (Glynn 1990, L'Ecuyer 1990, Reiman and Weiss 1989, and Rubinstein 1989) can
be used as follows to estimate wt(0, s). Let us view w as representing the sequence of inter-arrival
and service times for the first t customers, that is, w = ((I,vl,. . ., (t, ( t). For any s E S, to

differentiate the expectation (4) with respect to 0, take a fixed 0o E 0 and rewrite:

wt(O, s) = j hi(8, sw)Lt(Oo, 8, s,w)dPo,s(w) (19)

where

Lt(Oo, , s,w) = t"i j )

is a likelihood ratio. Under appropriate regularity conditions (see L'Ecuyer 1993), one can differ-
entiate wt by differentiating inside the integral:

w '(0, s) = j•t(O, s,w)dPeoo,(w)

where

00, 8 ,w) = ht(,,sw)L O,8,sw) ht(O, s,w)Lt(Oo, ,8,s,w)St(O, s,w) (20)

is the LR estimator,
L t(00, O, S
L t(Oo,0, s, w)

S,(O,8,,w)= L,(8o,8, )=Zd (21)
i=1

is called the scor- function, and

d= In be((j).

Only one simulation experiment (using Peo,.) is required to estimate the derivative. ZFrom Propo-
sition 14, under Assumption B, (20) is an unbiased estimator of w'(O, s) for 0 in some neighborhood
of 0o. After adding the derivative of the deterministic part and taking 00 = On, the LR derivative

estimator at iteration n of SA becomes

Yn = C'(00) + Otn (On, S, n) /tin = C'(6.) + ht.(8., s,.) St. (OnS.,v.) /t. (22)

Note that the variance of St(O,s,w) (and of (20) at 8 = 00) increases with t. This is a significant
drawback and must be taken into account when making the tradeoff between bias and variance.

Here, O' = 0 and )3F _. 0 as tn -- 0. But the variance on Y, then goes to infinity also. One

remedy, as in FD, is to increase in more slowly. We show in Proposition 17 that under Assumption

B, the variance of Y, does not increase faster than linearly in tn. The conditions of Proposition 1
can then be verified with -In = - 0n- 1 and t, = t, + tbnf' for 0 < p < 1, where t. and tb > 0 are
two constants. In the finite-horizon case, SA with LR converges at a rate of t 1'2 (Glynn 1989) in'

terms of the total simulation length t. But when the variance increases with it and tn increases
with n, this is no longer true.

One can circumvent the bias/variance problem of LR by exploiting the regenerative structure

(Glynn 1986 and 1990, Reiman and Weiss 1989). One approach is to combine estimators for each
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of the four quantities on the right-hand-side of (6) to construct an estimator for w'(0). One can

estimate 1(0) and u(O) as usual, and u'(0) and t'(0) by:

u(O,w)- =(EWi* S'(,0,•W) (23)

and
0t(0,w) = rS,(0,O,w), (24)

respectively. ,From Proposition 15, under Assumption B, these estimators are unbiased. Suppose
one simulates for r regenerative cycles. Let rj be the number of departures during the 2 -th cycle,
hj the total system time for those ri customers in cycle j, and Si the score function associated
with that cycle. Then, an estimator of w'(0) is given by

r r r r_ h j hj E rjS .
(,0, w) '= ,=' (25)

(j)2

This estimator is biased for finite r. However, we show in Proposition 18 that under Assumption
B, as r --- oo, (25) has bounded variance and converges in expectation to w'(0), uniformly with
respect to 0. The corresponding estimator of a'(On) for iteration n, based on tn regenerative cycles,
is:

Yn = C'(8n) + 0&,(tn,9, .w). (26)

Now, instead of trying to estimate &'(0,,) at each iteration, one can estimate (8). Since (23-24)
provide unbiased estimators of u'(0) and 1'(0), an unbiased estimator of (8) can be obtained from
two independent regenerative cycles as described in the text that follows (8). One can also use
more than two cycles and average out. Further, estimators of all quantities can be computed from
each cycle and combined in a splitting scheme. Take 2tn cycles at iteration n, and let ri, h,, and
Sj be defined as for (25). Then, an unbiased estimator of (8) at 0 = On is

1 tn

Yn= ' 1 (h 2jS 2j'r2 j-l + h 2j- 1 S2j-1 r 2j - h2j-lSj.r 2j - h 2jS2j-l3 r 23 - 1) + T2jr2j- 1 C'(6n))
nj=1

(27)
Since this estimator is unbiased, tn can be taken constant in n, (e.g. t, = 1 for all n).

The estimators (22), (26) and (27) can be integrated into the SA algorithm. The following
proposition tells us about the a.s. convergence of such a scheme.

PROPOSITION 5. Let Assumptions A-C hold.

(a) Suppose one uses SA with the LR estimator (22). If sn E S for all n, t, -- oo, and
= t,,n- 2 < oo, then On -- * 0" a.s..

(b) If one uses SA with the regenerative LR estimator (26) and tn - oo, then On --+ 0* a.s..

(c) If one uses SA with the estimator (27), then On --+ 0* a.s.. a

10



3.4. Infinitesimal Perturbation Analysis (IPA)

The basic idea of IPA, applied to our context, is to estimate w'(8, s) by the sample derivative

t

h'(,s,(w) = (28)
t=1

where w is interpreted as the sequence Ui, U2,..., defined before Assumption A,

6i = - OB;'(Ui) 'Z, (29)a19J=vi J-=-V

and vi is the first customer with index > 1 in the busy period to which customer i belongs. That
is, vi = max{j 1 1 < j _< i and Wj = 0} if that set is non-empty, vi = 1 otherwise. For further
details and justifications, see Glasserman (1991) or Suri (1989). Then,

Y. = C'(O.) + h'(0., sn,,w)/t., (30)

which can be computed easily during the simulation. The sum (29) is called the IPA accumulator.
Observe that imposing vi 2! 1 means that we consider only the service time perturbations of the
customers who left during the current SA iteration. In other words, (28) assumes that the IPA
accumulator is reset to zero between iterations. The initial state sn of iteration n can be either 0
for all n (always restart from an empty system), or be the value of (Wt* - Vt)+ from the previous
iteration (for n > 1).

We can consider another variant of IPA in which the IPA accumulator is not reset to zero
between iterations. In that case, both sn and the initial value an of the IPA accumulator are taken
from the previous iteration. The value of an is the value of 6 t from the previous iteration if sn > 0,

and is 0 otherwise. It must be considered as part of the "state". For this IPA variant, (28) must
be modified to:

h't(Os,a,w) = akt + b6,, (31)

where a is the initial value of the IPA accumulator and

kt = min(t, min{i > 0 I0W1  = 0}). (32)

represents the number of customers in the current iteration who are in the same busy period as the
last customer of the previous iteration, when W1 = s > 0.

As for LR, we can also construct regenerative IPA estimators. With s = 0, the value of (28) for
the first cycle is

h'(OO,w) - " (33)

i---1 j=1i

With r cycles, let ri and hý denote the respective values of r and h'.(0,0,w) for the j-th cycle. An
estimator of w'(0) is then

(34)

11



At iteration n, take r = tn regenerative cycles and let Tn - =1 ri. This yields

Yn = 08no) + "J= = 08no) + -' i (35)
. =1ni=1

Unfortunately, for finite tn, this estimator is biased for a'(8n). To better exploit the regenerative
structure, one can estimate (7) instead of (5), using IPA. This was suggested in Fu (1990). ZFrom
Proposition 11 and (6), Ee[h' (O,O,w)] = t(O)w ' (O) = u'(0) - w(O)l'(O), so that IPA provides an
unbiased estimator of (7) based on a single regenerative cycle. Using tn cycles at iteration n and
averaging out yields the following estimator:

1 tnh' +riC'On))(36)
j=1

As pointed out by Fu (1990), proving a.s. convergence of SA to the optimizer is relatively easy with
(36), because it is unbiased for (7) at 0 = O, for any t,. With (30) and (35), it is more difficult.

Heidelberger et al. (1988) argue that (28) divided by t is a consistent estimator of w'(8) for a
rather general class of GI/G/1 queues, and give a proof for the M/G/1 case. To prove convergence
of SA using Proposition 1, what we need is not convergence of (28) divided by t to w'(0) a.s. (as
t --+ 0o), but convergence in expectation, uniformly over 0. In fact, both kinds of convergence, as
well as variance boundedness, follow from Propositions 9-11. Proposition 9 also shows that the
IPA estimator (28) is unbiased for w,(0, s) under Assumption A. This leads to:

PROPOSITION 6. Let Assumptions A and C hold.

(a) Suppose one uses SA with the IPA estimator (30). If s, E S and a, = 0 for all n, and
tn -- o0, then On, --1 * a.s..

(b) If one uses SA with the estimator (35), with tn, o0, then On, 0 9 a.s..

(c) If one uses SA with the estimator (36), then O, 0 * a.s.. I

If an is not reset to 0 between iterations, proving Proposition 6 (a) appears more difficult, but we
believe that the result still holds. Proposition 6 (c) corresponds to the result of Fu (1990).

For this GI/G/1 example, IPA has the stronger property that even when using a truncated
horizon t, that is constant with n, if the IPA accumulator an is not reset between iterations and
under mild additional assumptions, SA converges to the optimizer. On the other hand, if an is
reset to zero at the beginning of each iteration, then we have the same problem as with FDC.
By keeping the value of a, across iterations, the estimator takes into account the perturbations
on the service times of the customers who left during previous iterations. It is true that the
structure of the busy periods, and (in general) the individual terms of the sum (28), could depend
on 0, which changes between iterations. But as On converges to some value, that change becomes
negligible under appropriate continuity assumptions. (In the present GI/G/1 context, the Zj's
are in fact independent of 0, but not the vi's.) With this intuitive reasoning, we should expect
SA-IPA to converges to 0* for whatever tn. Proposition 7 states that this is effectively true under
a few (sufficient) conditions. Here, we cannot use Proposition 1 because /3o 74 0. Instead, we
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give a weak convergence proof by verifying the assumptions of the main theorem of Kushner and
Shwartz (1984). Using different proof techniques, Chong and Ramadge (1992a, 1993) have shown
a.s. convergence (which is stronger) for SA-IPA with constant truncated horizon. On the other
hand, with the regenerative IPA estimator (35), SA does not converge to 9' in general if t,. 7- oc.

PROPOSITION 7. Consider the SA algorithm with IPA, under Assumptions A-C, with {I,,, n >
0} satisfying W4 of Appendix I, and constant truncated horizon t,, = t. Let the interarrival time
distribution have a bounded density. Suppose that Zi can be expressed as Z, = •(0, i), where
ýo : E) x R+ -- R is a function such that ((., () is continuous for each C 2! 0 (and is not expressed
as a function of Ui). Suppose also that the IPA accumulator is not reset to 0 between iterations.
Then, On converges in probability to the optimum 0*. 1

4. Conclusion

Through a simple example, we have seen how a derivative estimation technique, such as FD,
IPA, or LR, can be incorporated into a SA algorithm to get a provably convergent stochastic
optimization method. In the companion paper (L'Ecuyer, Giroux, and Glynn 1993), we report
numerical investigations and point out some dangers associated with different kinds of bias. The
performance of these algorithms when there are many parameters to optimize, the incorporation
of proper variance reduction techniques, the study of convergence rates, and comparisons between
SA and the stochastic counterpart approach (Rubinstein and Shapiro 1993), are other interesting
subjects for further investigation. In principle, IPA and LR can be used to estimate higher order
derivatives, but the variance is likely to be high. Is it too high to permit the implementation of
good second order algorithms based on these estimates ? Again, further investigation is needed.

The convergence results of §3 can be extended to more general models than the GI/G/1 queue.
Consider for example a general discrete-time Markov chain model parameterized by 9. Let wt(O, s)/t
be the expected average cost per step for the first t steps, if the initial state is s (we have removed
C(O)). Suppose that (12-13) hold (which implies that the derivative exists), that w(O) is strictly
unimodal, and that an unbiased LR or IPA derivative estimator for w'(0, a) is available. If the
variance of the LR estimator is in 0(t), then Proposition 5 (a) applies, while if the variance of the
IPA estimator is in 0(1/t), then Proposition 6 (a) applies. Further, if the system is regenerative,
and if unbiased LR estimators are available for t'(0) and u'(0), then one can construct estimators
for w'(On) and £2(9,)w'(e,) as in (26) and (27). If those estimators have bounded variances and
converge in expectation uniformly in 9, as t, -, oc, then Proposition 5 (b-c) applies. If a FD or
FDC estimator is used and if w(.) and wt(., s) are continuously differentiable (for each s), then
Proposition 3 applies. All of this generalizes straightforwardly to the case where 0 is a vector of
parameters. Derivatives are then replaced by gradients.

Appendix I. Sufficient Convergence Conditions

In this appendix, we prove Proposition 1 and give a second set of sufficient conditions, which imply
weak convergence of the SA algorithm (9) to 0".
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PROOF of Proposition 1. For each n, the sequence 1) is a martingale. For
each E > 0, from Doob's inequality and from S3, we have

P sup E > •) <f!5 y2Eo[EI < 2 E

for some constant K. This upper bound goes to zero as n -- oc. Hence, we obtain condition
A2.2.4" of Kushner and Clark (1978), and the result then follows from their Theorem 5.3.1. 1

Often,j3 ,-4 0, but Eo(03,] -- 0 as n -- oo, and the algorithm converges as well to the optimum.
This is addressed by the following (weaker) result, which follows from the results of Kushner and
Shwartz (1984) and by adapting the proof of the second part of Theorem 4.2.1 in Kushner and
Clark (1978) (note that in the last paragraph of the latter proof, the max should be replaced by
a min). We now restate the assumptions of Kushner and Shwartz (1984), with slight adaptations.
See the latter reference for further details.

W1. Denote tn = (Y1,, st+0) E R x S. Assume that Pe,. is weakly continuous in (0, s), ;n the sense
that P9,8 #- Pe,.o when (0,s) -- (#0, s0), and that E[Y,+c I (On,s,O) = (8,s)] is continuous
in (8, s), for some integer c > 0. Assume that for each fixed 0 E E, i.e. if -,n = 0 for all
n, {1, n > 1Q is a Markov process with unique invariant measure P and corresponding
mathematical expectation E6. Denote v(0) = E9 (Y,). Let {P*,O E 0} and {f, ,n > 1} be
tight (the latter uniformly over 6 and s; see Kushner and Shwartz 1984).

W2. For each compact C C R x S, there is an integer nc < o such that for each T > 0, the set
of probability measures {P[(0n,,+i,t,,+j-) E . I On = O,G = ], E 0, t E C, n > 1, . _

nc, ,n+j "i --- T, C compact subset of S} is tight.

W3. For some constant X > 0, supn>1 Eo[IYnJl+'] < cc.

W4. IN,, > 0 for all n, lim -,,.Y,, = 0, F_' 7,, = oo and Z'= 1-,,+l - i,•I < cc.

W5. The function v is nondecreasing in 0 and has a unique root at 0" E 0.

THEOREM 1. Under WJ-W5, On , -- * in probability, i.e. for each c > 0, im,-(ý P(110" -
0*11 Ž c) = 0. Also, v(O) is continuous in 9. 1

Appendix II. Convergence Proofs

In this Appendix, we prove that under our assumptions, LR and IPA provide unbiased estimators
for w'(8, s). We obtain variance bounds for these derivative estimators and for their regenerative.
counterparts, which are asymptotically unbiased and converge in quadratic mean, uniformly in 6.
We also show that wt(., s) and w(.) are continuously differentiable and that (12-13) hold. We then
prove Propositions 3 to 7.
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PROPOSITION 8. Let , E ; be the initial state and r be the number of customers served before
the system empties out for the first time. Let h(0, s,w) be defined as in (28). Under A (i), there
exists finite constants KC, K,, and Kh, all > 1, such that

sup E6 [(s] <_ KC; (37)
0e0 o

sup Ee,, ITa] :5 Ku; (38)
8E0, OEGO

sup Eo,, [(h,(O,s,w))4] <_ K,. (39)
sES, 8E•°

Under A (i-ii), there also exists a finite constant K' > 1 such that

sup Ee,. [(hK(es,J))2] < g•. (40)
aES, 8E6°

PROOF. ZFrom A (i), Ee[C8] _< P[Cs] def K1 < oo, which gives (37). ZFrom Theorem 111.3.1

(i) in Gut (1988), page 78, one has E[r 8 I s = c] def K, < oo. Now, let (, = b 1-(Uj) and f be
the respective values of Ci and r obtained if Be is replaced by B while w = (U1, U2,...) remains
the same. One has Ci Ž (i. But increasing any service time or increasing s cannot decrease the
number of customers in the first busy cycle. Therefore, r is stochastically dominated by f, which
is itself stochastically non-decreasing in s. ZFrom basic stochastic ordering principles (Wolff 1989),
this implies (38).

For each i, one has W, <_ s + ,-' C.-, so that for each t > 1, ht(0,s, () = <(W, +

t (s + ( Ct). Recall that if k is any (integer) power of two, then (z + y)+ < 2k-'(x- + yk) (easy

to check by induction on k). Therefore,

(ht(o,s,w))k < tk S+ )' < 2k-ttk s k + k) . (41)

This holds in particular for t = r and k = 4. Then, from Theorem 1.5.2 in Gut (1988), page 22
(used in the third inequality), there is a constant K1 < 0o, independent of 0 and s, such that

Es,. (8 4Ee,4r4] + 8Ea E C) ,]

" 8sEO.[r4] + 8E:.([rs] + 8Ee,.

" 8S4Ee,,[r 4] + 8E9,,[r8] + 8Kj(E*,,[r8]Ee,,[C8J)1• 2

" 8(c 4 K, + K, + KIKKC) 4=- Kh < oo.

jZFrom (28), for any k > 1, one has

15



Again, since this holds for t = r and k = 2, and using Theorem 1.5.2 of Gut (1988), there is a
constant K 2 < oo such that

< Ee,,[r4] + K 2(Ee,.[r']Ee[Z1])11 2

K,+KK2 KrK = K' < oo.I

PROPOSITION 9. Under Assumption A, for each s, w&(., s) is differentiable, and for each
(0, s) E 6 X S, (28) is an unbiased estimator of w'(0, a).

PROOF. For fixed w, ht(9, s,w) is continuous in each (j, and therefore continuous in 0 from A
(ii). It is also differentiable in 0 everywhere except when two events (arrival or departure) occur
simultaneously, which happens at most for a denumerable number of values of 0 for almost any
(fixed) w. Also, for any fixed 0, this happens with probability zero. Using (42) and (37), one
obtains, for all 0 E 0)0,

Eeh'0,<3 )2: t2E E Z,) 21: t4EO[Z,] :5tlr

Since every 0 E 0 has a neighborhood contained in 60, the conclusion then follows from Theorem
1 in L'Ecuyer (1990). 5

We now show that the mean-square error of ht(9, s, w)/t as an estimator of w(O), as well as the
mean-square error of h'(8,s,w)/t as an estimator of w'(0), are in the order of l/t, uniformly in
(0, s) E 0 x S. As a consequence, the variance and squared bias of these estimators also decrease
uniformly, linearly in t. The uniform convergence properties (12-13) will follow from that.

PROPOSITION 10. Under Assumption A (i), there is a finite constant Ke such that for all
t> 1,

sup E9, ht(. O,w) w(8) _ 1- (43)
ses, see• 1 t t

Under Assumption A, w(g) is differentiable everywhere in E) and there is a finite constant K' such
that for all t > 1,

sup E&,' [ ( w) < (44)
*es, gee [k t Ij t

PROOF. We adopt the convention that the j-th busy cycle ends when the system empties out
for the j-th time. When s 96 0, the first "busy cycle" does not obey the same probability law
than the others, but all the busy cycles are nevertheless independent. For j > 1, let ri be the
number of customers in the j-th busy cycle, hi the total sojourn time of those rj customers, and
Ai = hi - w(O)ri. For j _> 2, one has Ee[Ai] = 0. dFrom Proposition 8, w2 (0) S Ee[h2] Kh
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and Ee,.[A;] <_ Ee..[h2 + Khtr] <_ Kt,(1 + K,) for all j > 1. Let M(t) = sup{i > 0 rj < t}and A(t) = E'W"M(+ri Sic h i" r ne
a t) =1 r1 . Since the A1's are independent and have zero expectation (for the fourth

inequality), applying Wald's equation (for the fifth inequality), and observing that M(t) <_ t (for
the sixth inequality), one obtains:

Ee,. ht(e,,sw) w(8)) E,, (W - w(O)))]

<- 1 E .s [ (M(t)+) ( ) (A-w(0t)MM))21
\j=l i=t+l

2AsAj + Z (h 2 + (O)rM2 )

2E [rM(t)+1 + h2 + W2(e)r2)]

-Ee. [i, A j + + w2er]+E eoMtI.[A +(h; 2(yr

2 -(1 + t)(2Kh(l + K,)) < 8Kh(1 + K,)
i2- t

which proves (43), with Ke = 8Kh(1 + K,).

To prove (44), let h• denote the sum of the 6,'s associated with the rj customers of the j-th
busy cycle, V'(0) = Ee[h']/Ee[T2], and Aý = hý - ti'(0)rj. One has E[Aý] = 0 for j Ž 2 and, from
Proposition 8, (tiv'(0)) 2 < Ee[(h') 2] < K' (since r > 1) and EO,3 [(A'.) 2 ] < E0,.[(h;) 2 + K'rj] _5
KI,(1 + K,) for all j >_ 1. Then, from the same reasoning as above, with Wj* replaced by 6i,

E.,1 [ (0, sw) - 2 '())] < K = --+K.K).
Ea.- t t

It remains to show that tiY(0) = w'(0). Using Proposition 9 for the first equality and the expected-
value version of the renewal-reward Theorem (Wolff 1989)) for the second one, one has

lim Wt(, s) lim Ee [ht(O, s,w)] = ti,(O).
t-0o t t-0o t

Furthermore,

W '(w i( a )) 2 = E e . [h '( O , s ,w ) 2  h t O a, w,.2

< L'+(ID'(e))2 < L--+K.
t t
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Then, since 6 is compact, w'(.,s)/t is integrable over 0. From the Fundamental Theorem of
Calculus (e.g., Theorem 8.21 in Rudin 1974), one has

wt(0,s) wt s) +-ow(ýS)d
tMi t

Taking the limit as t -. oo, using the dominated convergence theorem to interchange the limit with
the integral, and then differentiating, yields

w'(O) = ulir w4(,s)/t-- = '(0). *
t-00 o

PROPOSITION 11. Under Assumption A, (12-13) hold.

PROOF. Equation (12) follows easily from (43) and the fact that

The proof of (13) is similar. I

PROPOSITION 12. For a given regenerative cycle, let r be the number of customers in that
cycle and h'(O,0,w) as in (33). Under Assumption A, one has

u/(O) = E9 [h'(8, 0,w)] )
LE,[]

PROOF. This has been shown in the proof of Proposition 10. 1

PROPOSITION 13. Under Assumption A, as r -- oo, (34) has bounded variance and converges
in quadratic mean to w'(0), uniformly with respect to 9, for 9 E 0.

PROOF. Define Aý = hý - w'(9)ri. As seen in the proof of Proposition 10, Ee[A'] = 0,
Eq[(A'.) 2] _< K'(1 + Kr), and Ee[A'.Afl = 0 for j $ i. Then,

r j= :j 2o[ r=_,(h' - ( )1 l
Le 2:=1Tj _() =IM E [F ; =1h. t()r,)

2_ 1 )2] < K (I+ K,)

As r goes to infinity, this converges to zero uniformly in 0. This also provides a uniform upper
bound on the variance of (34). 1

PROPOSITION 14. Consider the truncated horizon LR derivative estimator (20), under As-
sumption B. Then, for each 8o E 0, there is a neighborhood T of 0o such that for all 0 E T and
s E S, (20) is an unbiased estimator of w'(0, s) with finite variance. Further, each wt(., s) is
continuously differentiable over e.
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PROOF. Here, for fixed w, ht(O,s,w) does not depend on 0. Since each be((,) is assumed

differentiable in 0, A2 (a) in L'Ecuyer (1993' is satisfied. Let K > 1, fo > 0, and 6 satisfy B (iv).

Then, using (41), [ sup 8 b.(() +su (be( O) 2

[e-ej:<eo (UP b( ) -2+,sup b-- + (ht(6,s,w))2

:5 -o sup ) 2] + K 2 + 2t 2s 2 + 2t 2 Ei ( )

1 E<i K2 SUP In be(C)) ] + K 2 + 2t 2s2 + 2t4E#((2) < 00.

The conclusion the.. follows from Proposition 2 of L'Ecuyer (1993) (with q = bi). I

PROPOSITION 15. Under Assumptions B (i-iii), u(8), 1(8), and w(8) are finite and contin-

uously differentiable in 8, for 0 E 0. Also, opu(O,w) and ikt(O,w), defined in (23) and (24), are

unbiased estimators of u'(0) and t'(0), respectively, for 0 in a small enough neighborhood of 00.

PROOF. We first prove the second part of the proposition and for that, we will use Proposition

3 of L'Ecuyer (1993). For fixed w, r and F-,T= W1
1 do not depend on 0. Therefore, r, I=l W,*,

and each be(G) are differentiable in 0 everywhere in 00. This implies A2 (a) in L'Ecuyer (1993)

with t replaced by r. ,From B (i), there is an 3 > 0 such that for all s < i, E[e'`] < oc. Then,

from Theorem 111.3.2 in Gut (1988), page 81, there is an el > 0 such that E[e'l'] < 00. Let

0 < K < e'/s, co, and 0 satisfy B (iii). One has

] sup (be(•) < KS' < ef1 T

i=1 10-0o l<0 iC )

and, by a similar stochastic ordering argument as in the proof of (38),

Ei [KS•'] :5 E, [e•'-] 5_ [,"r] < oo.

jFrom Wald's equation and B (iv),

E -- -l s (be 3 ) ] = Ei[r]E[ sup ) 4 1

Li1-00l<o bl((i) / 0LI01<bo bi(C) j

- E[r]Ei K SUP0 (± •nbe())] < 00.

Then, from (39), all the requirements of A3 in L'Ecuyer (1993) are satisfied, with h(O,w) there

replaced by either r or FYj W,* (which here do not depend on 9 for w fixed), and r1•() = K8.

This holds in a neighborhood of 0o for each 86 E 0. This implies the result, except for the continuous

differentiability of w, which follows from (6) and the continuous differentiability of u and t. I

PROPOSITION 16. Under Assumptions B, sup 9E Eo[d?] < oo.
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PROOF. Let K > 1. From B (iv), for each Oo E 6, there is an open interval T(Oo) = (0, -

to,Po + to), a 9 E 0, and a constant k(9o) < oo such that

Ei L•r(0sup (± In bs{())] _< k(0o).

It follows that

sup Eq[dj] sup E# [((-nbo( b s(CA

< KEý sup (2-ln b9(0)] K •(8 0o).
L9ET(Oo) a

Now, {T(Oo), Oo E 6} is a family of open sets that covers 0. Since 0 is compact, there is a finite
subset of that family, say {T(0()),. .. , T(G(N))}, that covers 0, and one has

sup Ee[dj] < max Kk(#(')) < oo. a,9, & I<_i<N

PROPOSITION 17. Consider the LR estimator (20). Under Assumption B,

sup Ee,. ?t'•(O, 8, ). < M.

oE, s.'c, t>1 t

PROOF. Since Ee(('] < oo (Proposition 8), from §VIII.2 of Asmussen (1987), since Ee,.[(W.)"] <_
Ee,,[(W.) 4 ], and from Proposition 16, there exists a constant Kd < oo such that

sup Ee,,[(W1 )4 +d?1 < Kd .

Recall that E[dj) = 0 and that the dj's are independent. Then,

,[t e2 d
E9, .f i,1 4( )J = Eo.,t Wi) ( d 2 ]

2=1

tt 1/2

< t 4 sup Ee,.[(W,)4] LE.,e,[d'djI
1<i<t i=1 j=1

< It K dt 2 K d 1/ 2 = t3 Kd. v

PROPOSITION 18. Suppose that Assumption B holds. Then, as r --# oo, the regenerative LR
estimator (25) has bounded variance and converges in quadoatic mean to w'(0), uniformly with
respect to 0 in e.

PROOF. ZFrom Proposition 8, Ee[rs] < K, and Ee f(h,(#,0,w)) 4 ] < Kh. LFrom Theo-
rem 1.5.2 in Gut (1988), there is a constant K, independent of 6, such that 1 < K. < oo
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and E*[(S,(9,O,w)) =E E.f[(E, 1 di) 8j < K,. Let K = max(K,,Kh,K,). Define A, -

hiSj - w(O)rSj - w'(G)ri and A 23 = hj - w(O)rj. Note that Ee[A,,] = Ee[A 23 ] = 0, since
w(#) = Eelhil/Eefrij and w'(8) = (Ee[hSi] - w(8)EufriSi)/Eefr,] (from Proposition 15). Also,
since Ee[r j ] > 1 (used in the first two lines), one has

w(8) <5 Ee[hj] < K1/4,

w'(0 ) <_ EofhjS31 - w(O)Ee[rjS,]

_< (Ee[h4])/ 4 (Ee[Sj])'1 8 + K"/4(Ee[rI]Ee [S,])1)8

< K3/8 +K1/ 2 < 2K'/ 2,

Ee[A~_ 2 1 2Ee[hSjI + 4w2 (8)Ee[rS1] +4(w,(&)) 2EO[Tr]

<_ 2(Ea[h!])1/2 (Ee[S•])l14 + 4K1/ 2 (Ee[rS8]Eo[SS])'/4 + 16K(Ea[rT])'/4

<_ 2K 3 /4 + 4K + 16Ks/ 4 < 22Ks/ 4 ,

Ee[A~3 ] = Ee[(hj - w(G)r,)4j

_ 8Ee[h ] + 8(W(OD'Ee[r.4]

< 8K + 8K . K" 2 < 16K 3 /2,

E0[(! r A 2 i)j 4] Le [ -rA A2j < 1iE#[A 3 4j 16K 3 / 2 /rT2 .Eo r A4 Eo 1: A2A2 r2<

Keeping in mind that rj _> 1 and Eo[Aj] = 0 for each j, one obtains

I2e 0w~,9w) - w()
<Ee

<E hj Sj - w() Erj Sj - w'(8) Eri + E i Fa r- hj E rj)
j=----I j=1 ----=1 j=[( j= j=1/'

5 2 e[A~] + 16K3/2 Ee ,j S.4] 1/2

< 2(22K5/4 + 16K 3 / 4 K 1/ 2 ) < 76K5/4/r.

As r - oo, this converges to zero uniformly in 0. These inequalities also provide a uniform upper
bound of 76K1/ 4/r on the variance of (25). 1

PROPOSITION 19. Under Assumptions A (i) and C, for each t > I and s E 5, w(9) and

wt(O, .S) are convex in 0 over 0.

PROOF. Since (i = Be (U,) and from (2), each Wi and Wj* are convex in 9 (for fixed U,'s).

Therefore, for each (s, t), wt(O, s) is convex in 0. This implies that w(8) = lim,...o, wt(e, s)/t is also
convex in 0. jFrom Assumption C, it follows that cr(8) is convex. 1
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PROPOSITION 20. Suppose that Assumptions A-C hold, that the system was originally started
from state s = 0, and that the service time of the 2 -th customer overall has distribution Be, with
e, E 0 (the 9, 's can be different and might even be the values taken by correlated random variables,
provided that these values are in 0). Let v, be defined as in (28) and K~h be as in Proposition 8.
Then,

sup E (46)h>0, t>1t 1: E j < z, (

- - ifk+l j=v.

Here, E denotes the expectation associated with the above sequence of 9, 's and we assume that it
is well defined. [Note that here, we do not assume that W,+i E S.]

PROOF. Suppose first that all the service times follow the distribution k. Then, the queue is
stable (Asmussen 1987, Chapter VIII). Let r be the number of customers in a regenerative (busy)
cycle, let 6i = " r(Uj), and let us view for the moment 6? as a "cost" associated with customer
i. The expected "cost" over a regenerative cycle is then, using the same argument as in the proof
of (40) and assuming that s = 0,

jrom the renewal-reward theorem (Wolff 1989), one then has

lrn !Z- ? = j2 /kr te K'. (47)
t t t -I

We will now show that 6, is stochastically non-decreasing in i. For fixed values of (i, Vi, and v,,
v,+. is a non-increasing function of W,. and it is easily seen that (W,+i,6i+1 ) is a non-decreasing
function of (Wi, i5) for any value of Uj+i. Since (W 1 , i) = (0,r(U1 )) while (W 2 ,i 2 ) > (0,r(U 2 )),
it follows that (W1, i1 ) is stochastically dominated by (W2,62) and, by induction on i, that (Wi, 6i)
is stochastically non-decreasing in i. Then, E[i?] is non-decreasing in i, and from (47), it follows
that E[6fJ < limt-.o E[$1] = K < KM.

We will complete the proof using stochastic ordering arguments similar to those used in the
proof of Proposition 8. For fixed U,, replacing Be by b for customer j increases (j and does not
affect the other service and interarrival times. Clearly, increasing a service time can never split a
busy period, i.e. can never increase any vi. Therefore, r and each 6i, generated under Bs or under
the assumptions of the Proposition, are stochastically dominated by r and 6, generated under B.
This implies that E[62?] _< E[bis 1< K,, where E is the sane as in (46). The expectation in (46),
which is the second moment of the average of bk+i,... 4

6 +t, is then bounded by K,. I

PROOF of Proposition 2. /,From Propositions 14 and 15, wt(.,S)/t and w(.) are con-
tinuously differentiable in 0 for each a E S and t > 0. Further, the continuity of w'(0) with
respect to 0 is uniform in 0 over 0, because the latter set is compact. Also, from Proposi-
tion 11, (13) holds. j,From Taylor's theorem, one has /3D = (w, - w.(O•,s,))/t, for
0; _ < O Z+. Note that as n - oo, one has 0+ - 0- -• 0 and therefore t,, - 9,n -- 0 a.s.. Then,

OD= [wt'fn, s,)t, - w'(1)] + [w'(.) - w'(01)9 + [w'(0n) - Wu4(G,, s,)/t,] and each bracketed
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term converges to zero a.s., uniformly in (6n, s,n), from (13) and from the uniform continuity of w'.

I

PROOF of Proposition 3. /From Proposition 10, the mean-square error of ht(O, s,&)/t
is in 0(1/t), uniformly in (9,s), so that Eni[Ed], which is the conditional variance of Yn, is in
O(tlc-'2 ) and E' EI..[1[Ed]n-2 < oo a.s.. -From Proposition 11, lim,.O. iF Va' 0 and the result
then follows from Proposition 1. U

PROOF of Proposition 4. ,From Proposition 10, the r2 's and h,'s have uniformly bounded
second moments. Therefore, the conditional variance of Y,, is in 0(t;'c"2 ) and, since tn > 1 for
each n, F"',L Enkf[]n- 2 < E', n2q-2 < oo for 0 < q < 1/2. Z.From Proposition 15 and since e
is compact, u(.) and 1(-) are continuously differentiable, uniformly over E). It is then easy to see,
using (16) and Taylor's theorem, that On,. -- 0 a.s., where on,, here is the difference between (16)
and (8) evaluated at 0 = 9,,. The result then follows from Proposition 1. 1

PROOF of Proposition 5. jFrom Proposition 14, lh,(O, ,,Wn) is an unbiased estimator
of wn(O,,s,n), so that O3R = 0. :,From Proposition 11, we know that O3,n = O3f -. 0 a.s. when
tn - 0. jFrom Proposition 17, there exists a constant Kd < oc such that En-.[c] < Kdt,n for
all n. Therefore, n] E,-1r.lE-- 2 -<' 1 Kdtn 2 < co. The first result then follows from
Proposition 1.

For (b), Proposition 18 says that as r - cc, (25) has bounded variance and converges in
quadratic mean to w'(0), uniformly in 0. This implies uniform convergence in expectation. Then,
imn,1..On = 0 a.s., the variance of Yn in (26) is uniformly bounded, and Proposition 1 applies.

For (c), one has 3n = 0. /From Proposition 8 and the proof of Proposition 18, r', hj, r2"S 1 , and
hjS, have bounded second moments for each j, uniformly in On. Therefore, the variance of (27) is
bounded uniformly in On and the result follows again from Proposition 1. a

PROOF of Proposition 6. ZFrom Proposition 9, h',.(On, Sn,w,n) is an unbiased estimator of
W( so thatn3• - 0. /From Proposition 11, we know that 13,O = F3F -- 0 a.s. when t, -. 0.
jFrom Proposition 10, the variance of h' (On,snw,.)/t,. is bounded uniformly in 9,n and tn. The
first result then follows from Proposition 1.

For (b), Proposition 13 says that as r - oo, (34) has bounded variance and converges in
quadratic mean to w'(8), uniiormly in 0. This implies uniform convergence in expectation. Then,
limn_,.o.,3n = 0 a.s., the variance of Yn in (35) is uniformly bounded, and Proposition 1 applies.

For (c), /, = 0 for each n. JFrom Proposition 8, r. and h' have bounded second moments. So.
the variance of (27) is bounded uniformly in O,. and the result follows again from Proposition 1. 1

PROOF of Proposition 7. We will verify W1 to W5 of Appendix I and the result will
follow from Theorem 1. For this proof, we will redefine differently the state of the Markov chain.

Remove the restriction sn < c and redefine the state at iteration n of SA as 8,. = (x,,, an), where
Xn is the sojourn time of the last customer of iteration n - 1 (z, = 0), and an is the value of the
IPA accumulator at the beginning of iteration n. Here, we assume that the arrival time of the first
customer of an iteration is "unknown" (not part of the state) at the beginning of the iteration.
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We do that in order to facilitate the verification of the continuity conditions required in W1. Let
a = (x, a) be the system state at the beginning of an iteration, k; be defined as in (32),

t i

.ak + E Z

and

S= (, w, i(kt = t)a + _ z)

Here, 0, is the value of the IPA estimator (31), while the other two components of ( give the initial
state for the next iteration. At iteration n, (0,x,a) = (O,zn,ao) and . n - = (P'iX,+i,a,+i).
Since t,, is fixed at t, Pe,x.s(ýn E -) does not depend on n.

To prove the weak continuity, let g : R 3 -. itR be continuous and bounded in absolute value by
a constant Kg. We need to show that Es,,a[g(9)] is continuous in (0, z, a). One difficulty is that for

fixed Ui's, the components of C are discontinuous in 0. To prove the continuity of the expectation,
we will use a likelihood ratio approach. Let 0o E 0, K > 1, co, and 0 be as in B (iv). Let x0 2! 0

and ao > 0. Let us view w as (vo, l ..... vt-i, (t) and assume that W is generated under Pj. Now,
for 10 - 001 <E o, x > 0 and a > 0, define

A(O,z,a,W) =g ak; + E 1w(&,(j), Wt', I(kt = t)a + E W(8,rb)i=1 j=V, j=vg= #(•

t 
be,

-g~~ ~ (akt, + t' 001W*O(kt*o= t)ao + 09 / 0

where kt 0,o, vi,o, and Wt*0 are the respective values of kt*, vi, and Wt" when x is replaced by Xo

while w = (vuo, (1, .t-, (t) remains the same. Let I(x, xo) = 1 if vi,o 0 vi for at least one i, and

I(z,zo) = 0 otherwise. Note that I(x,zo) = 0 implies that k 0,o = k;. Also,

t i-i

Pg((X, X =0) E # [zio-Xo+z(V <-() < IX-Xo ,

i= r '- =l

< 2tK< ojx - ool,

where Ei integrates over the values of z, and K& is a bound on the density of the interarrival time

vo. Conditional on I(z,zo) = 0, A(8,z,a,w) is continuous in (0,z,a), because g is continuous,
Wt" is continuous in z and does not depend on (8, a), be(C) W(8, () are continuous in 0 for each (,
kt,o = kt, and vi,o = vi for each i. Further, IA(O,x,a,w)l is bounded by 2KgKt and is zero when

(0, z, a) = (0o, xo, ao). Therefore,

lim . IEa,•,,[g(•)]- E , g(9,za)--.(9.o ,•oo)

- lim IEu [A(O, x, a, w)]
(G,,a)- (Go,xo ,ao)
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< Jim l EjfA(9, z,a,w)( - I(.Tx,x))] + Ei[2KgK'I(x,xzo)Jj

< g lm )A0x,a,w)( - I(x,zo)) + l 2KgKl2tK&,Ix - xol
- ( 0,X,,, )-.- ( 8,ro,ao)(,T() (0Z ,0

"" 0,

where the dominated convergence theorem has been used to pass the limit inside the expectation.
This proves the required weak continuity. This also implies (as a special case) that E is
continuous in (0, x, a), which verifies the second requirement of WI, with c = 0.

For fixed 0 E O, since the system is stable, {fn, n > 1} is regenerative and is a Markov chain with
some steady-state distribution p 9 (see Asmussen 1987, chapter VIII). Regeneration occurs when-
ever an iteration starts with an empty system. ZFrom Proposition 20, supn>1 Eo[(Ob*/t,,) 2 ] <_ K'
and sup,n>1 Eo[a2] _ K,. This yields W3. By similar arguments as in-the proof of Propo-
sition 8, one can show that sup,n>1 Eo0[•] < Kh. Take K = max(Kh, K'). For any c >
0, one has K > Eo[(Ob/tn) 2] >-(3K/c)P[(4,/tn)2 > 3K/I], so that sup,n>1 P[(0*/tn)2 >

3K/E] < c/3. Similarly, sup,,>, P[x2 > 3K/l] _< c/3 and sup,,>1 P[a2 > 3K/'E] < c/3. Then,
supn>1 P[max((0> /tn)2,z2+za2+) <_ 3K/e] > 1 - c. This reasoning also holds for 0 varying in
any manner inside 0. This implies the tightness properties required in W1.

For W2, let C be a compact subset of R x S, c < oo such that C C [0, c] 3, and let G,, E C. Let
i denote the i-th customer overall and nt + 1 + T,,n be the index of the first non-waiting customer
from the beginning of iteration n + 1. One has rn = 0 if iteration n + 1 starts with a new busy
cycle and otherwise, r,. is the number of customers, from the beginning of iteration n + 1, who
are in the same busy cycle as the last customer of iteration n. jFrom the same argument as in
the proof of Proposition 8, there exists K1 (c) < oo such that E *=c(r)2] <_ K.(c). Then, from
straightforward stochastic ordering, E[(r,.) 2 I c,,] <: t,=[(rT*)2] < K,(c). This implies that for all
c > 0, P[fT* > K.,(c)/lc I ] <_ c. Let c > 0, n*(c) = rK,(c)/c], E = (3K/c)1/2, and C = [,Z]3. Let
nc = 1 + rn*(c)/tl and i > n,. For each 0 < j < n,, from the same argument as we used above to
prove W1, one has P[,n+i E C I = j] > 1 - c. Then,

n*(c)

n'(c)

E Pfrn*=Ik,,Pk,,+jE I1 'r =jil

>(1 - c)P[r,* <5 n*(c) I ,,] >_ (1 _ C)2.

Here, P denotes the probability law associated with the Markov chain {I,,, n > 1} when 0 varies
according to the algorithm and n, can be interpreted as a time that we give to the system to
stabilize. Roughly, if c is larger, the initial state could be larger (e.g. large initial queue size), and
we will take a larger n,. This implies W2.

When 0 is fixed, from Proposition 9, 6, is an unbiased estimator of the derivative of the expected
system time of the i-th customer (overall). Then, 10,• is unbiased for the gradient of the expected
total system time of customers nt,...,(n + 1)t - 1. When n --- oo, from (13), the expectation of
tk*/ti, + C'(0) thus converges to a'(0). Therefore, v(6) = a'(0) and W5 follows'. ff
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